Cancer Stem Cell Markers

Just as mature cells of the blood, skin, colon, and breast are replenished by a population of tissue-specific stem cells, increasing evidence now suggests that cancers, too, depend on stem cells for continued growth. This notion originated in studies of hematopoietic cell types, where the leukemia stem cell (LSC) was identified by flow cytometric studies. Cancer stem cells have subsequently been identified in solid tumors of the breast and nervous system, suggesting that this phenomenon may be widespread. Importantly, molecules that serve as markers (either singly or in particular combinations) of cancer stem cells have also been discovered, allowing identification, purification, and detailed study of these cells.

R&D Systems offers and supports a wide array of research reagents for the study of cancer stem cells.

Cancer Stem Cell Markers				
MOLECULE	ANTIBODIES	PROTEINS	ELISAs/ASSAYS	
Hematopoietic Cancer Stem Cell Markers				
BMI-1	н			
CD34	Ca			
CD38	н			
CD90/Thy1	н			
IL-3 Rα/CD123	HM	HM		
MS4A1/CD20	н			
Neprilysin/CD10	HM	НМ	н	
SCF R/c-kit	HM	н	Н	
Syndecan-1/CD138	HM			
TfR (Transferrin R)/CD71	н			

Breast Cancer Stem Cell Markers

BMI-1	Н		
CD2	НМ		
CD3	НМ		
CD31/PECAM-1	Н	H M P	
CD44	Н	Н	
Fcγ RI/CD64	НМ	НМ	
Fcγ RIII/CD16	НМ	НМ	
Gli-1	н		
Gli-2	НМ		
Integrin β_2 /CD18	НМ		
Neprilysin/CD10	НМ	НМ	н
PDGF Rβ/CD140b	НМ	НМ	Н

Nervous System Cancer Stem Cell Markers

Musashi-1 H Nestin H R	
Nestin H R	
S0X2 H M	

Key: H Human M Mouse R Rat Ca Canine P Porcine

SOX2 Expression in Teratocarcinoma

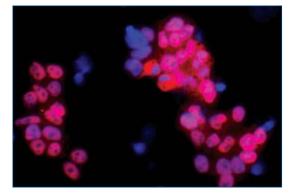


Figure 1. Detection of SOX2 in NTera-2 cells (human teratocarcinoma stem cells) using R&D Systems mouse anti-human SOX2 monoclonal antibody (Catalog # MAB2018; red). The nucleus was counterstained with DAPI (blue). *Image courtesy of Jingli Cai and Mahendra Rao, National Institutes of Health*.

Expression of Nestin in Glioblastoma

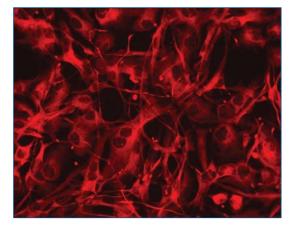


Figure 4. Detection of nestin in human glioblastoma cells using R&D Systems mouse antihuman nestin monoclonal antibody (Catalog # MAB1259). Cells were stained with a rhodamineconjugated secondary antibody (red).

SCF R/c-kit in TF-1 Cells

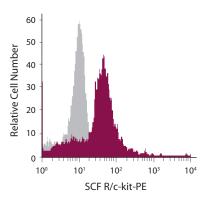


Figure 2. Detection of SCF R/c-kit in TF-1 cells (human erythroleukemic cell line) using flow cytometry.Cells were stained with R&D Systems phycoerythrin (PE)-conjugated anti-human SCF R/c-kit monoclonal antibody (Catalog # FAB332P; red histogram) or isotype control (Catalog # IC002P, light gray histogram).