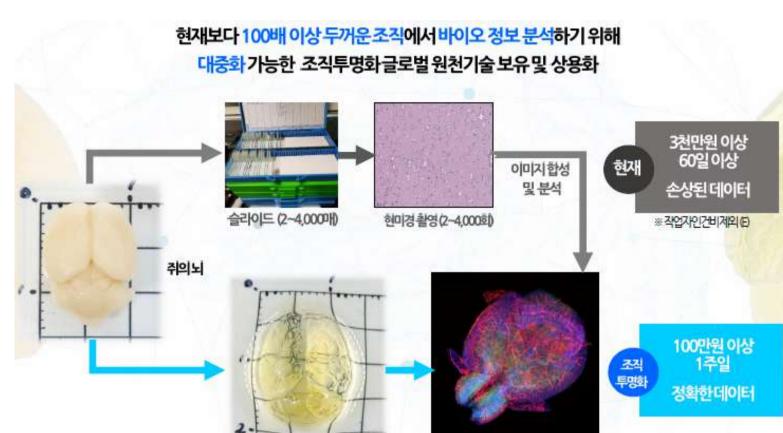

Tissue Clearing?

세포내에서 굴절률이 다른 물질(지질) 제거

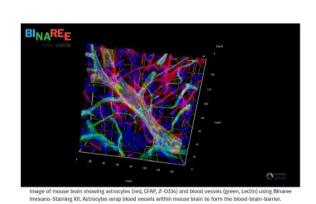
IHC는?


조직 내부를 볼 수 없었기 때문에 section을 하여 단층을 확인

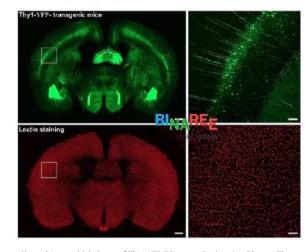
Tissue clearing이란?

두꺼운 tissue를 투명하게 만들어 내부를 볼 수 있게 만드는 기술

IHC보다 100배 이상 두꺼운 조직에서 바이오 정보를 분석하기 위해 Tissue clearing 기술을 이용해보십시오


투명화처리 (1회)

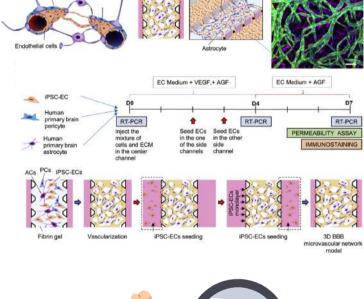
Tissue clearing 기술을 통해 왼쪽 사진과 같은 실험 결과를 얻으실 수 있습니다.


※ 바이나리 Tissue Clearing Kit의 장점

- 쉬운 Protocol (버퍼 교체 6번이면 끝)
- 연구자에게 안전한 성분 (유기용매로 인한 독성 없음)
- 정보 손실의 최소화 (막단백질의 변형 없이 투명화)
- 국내 기업으로 빠른 본사 대응 가능 (대구 소재)

현미경촬영(1회)&3차원이미징화

Cleared 1-mm-thick tissue of Thy1-YFP-TG mouse brain using Binaree Tissue Clearing Kit (Cat. HRTC-001). The brain blood vessels labeled using by Lectin


AIM biotech

3D BBB microvascular network model

뇌를 대상으로 하는 약물 전달 과정을 연구하고, 각종 질병의 병리학적 neurovascular fucntion을 이해하는데 있어 BBB 모델은 효과적입니다. 하지만, in vivo 동물 BBB model의 복잡성과 비싼 비용에도 불구하고, 동물 실험을 허가한 약물 후보자들 중 80%는 임상 실험에서 실패하고 있습니다. 따라서, 예측 가능하며 비용적으로도 효율적인 in vitro BBB 모델이 필요합니다. 이런 문제를 해결하기 위해, microfluidic 기술을 사용하여 iPSC 유도 endothelial cell(EC), brain pericyte(PC), astrocyte(AC)의 co-culture를 통해 3D BBB 모델을 만들 수 있습니다. 이 모든 human cell은 vascularization을 통해 fibrin gel 안에서 미세 혈관 네트워크를 구축할 수 있습니다. 이렇게 만들어진 BBB 모델은 tight junction protein 과 같은 생리적으로 유사한 구조를 나타낼 뿐만 아니라, 투과성이 동물모델 뇌에서 측정한 생체 내 값에 필적할 수 있습니다. 따라서 이 in vitro BBB 모델은 뇌 대상 약물을 검사하거나 neurovascular function을 연구하는 데 사용될 수 있습니다.

More information >>

Blood-Brain Barrier protocol 확인 >>

강기모 대리 02-881-5432 (742) techserv@woongbee.com

kmkang@woongbee.com

학술 담당자

AIM chip - Ready-to-use microfluidic chip Microfluidic devices for cell culture

Using microfluidic technologies for 3D cell culture brings additional benefits:

Microfluidic devices require small volumes of culture

media and small quantities of cells, leading to

- reduced running costs. Studies can be conducted in cases where the cell source is limited (e.g. clinical samples) Microfluidic devices have Low space requirements given their small footprints, making it possible to
- scale up experimental throughput ■ Compartmentalisation of cells into different chan-
- nels/zones & live cell imaging analysis enable experimental designs with spatiotemporal elements

The chip is 25mm wide, measured from the edges shown above.

Multicellular culture made possible, with meaningful


organization into models of biological systmes

The multi-channel design of AIM 3D Cell Culture Chips enables the co-culture of different cell types in distinct compartments in the device, yet allowing paracrine signalling between cell types to take place. the movement of cells

between different channels (or within an individual channel) can be easily observed & tracked. The growth and/or migration of cells within gel can often cause gel shrinkage or degradation. This problem is mitigated by the use of posts in AIM chips. The posts help to

stabilize the gel and increase cell culture duration before

the matrix collapses.

Collagen I

